Weighted Cauchy-type problem of a functional differ-integral equation
نویسندگان
چکیده
In this work, we are concerned with a nonlinear weighted Cauchy type problem of a differ-integral equation of fractional order. We will prove some local and global existence theorems for this problem, also we will study the uniqueness and stability of its solution.
منابع مشابه
Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition
In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.
متن کاملNon-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملApproximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
متن کامل